Abstract

Cancer remains a foremost cause of deaths worldwide, despite several advances in the medical science. The conventional chemotherapeutic methods are not only harmful for normal body cells but also become inactive due to the development of resistance by cancer cells. Therefore, the demand of safe anticancer agents is increasing and enforced the bottomless research on the bacteriocins. Several studies have reported the selective anticancer property of bacteriocins. Current research is the contribution to explore the exact mechanism of action and in vitro application of bacteriocin (BAC-IB17) as an oncolytic agent. In this study, β-lactamase mediated resistance of methicillin resistant Staphylococcus aureus (MRSA) was studied and inhibitory mechanism of MRSA by BAC-IB17 was investigated. Cytotoxic studies were conducted to analyze the anticancerous potential of BAC-IB17. Results revealed that BAC-IB17 inhibited the β-lactamase and produced profound effect on the membrane integrity of MRSA confirmed by scanning electron microscope (SEM). FTIR spectroscopic analysis revealed the changes in the functional groups of bacterial cells before and after treatment with BAC-IB17. BAC-IB17 also found anticancer in nature as it kills HeLa cell lines with the IC50 value of 12.5 μg mL−1 with no cytotoxic effect on normal cells at this concentration. This specific anticancer property of BAC-IB17 will make it a promising candidate for the treatment of cancer after further clinical trials. Moreover, BAC-IB17 may control MDR bacteria responsible for the secondary complications in cancer patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call