Abstract

The thalamic reticular nucleus (nRt) provides an important inhibitory input to thalamic relay nuclei and is central in the generation of both normal and abnormal thalamocortical activities. Although local inhibitory interactions between these neurons may play an important role in controlling thalamocortical activities, the physiological features of this interaction have not been fully investigated. Here we sought to establish the nature of inhibitory interaction between nRt neurons with intracellular and extracellular recordings in slices of ferret nRt maintained in vitro. In many nRt neurons, intracellular recordings revealed spontaneous inhibitory postsynaptic potentials (IPSPs). In addition, the local excitation of nRt cells with glutamate led to the generation of IPSPs in the intracellularly recorded nRt neuron. These evoked IPSPs exhibited an average reversal potential of -72 mV and could be blocked by picrotoxin, a GABA(A)-receptor antagonist. These results indicate that nRt neurons interact locally through the activation of GABA(A) receptor-mediated inhibitory postsynaptic potentials. This lateral inhibition may play an important role in controlling the responsiveness of these cells to cortical and thalamic excitatory inputs in both normal and abnormal thalamocortical function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.