Abstract

Local inhibitory microcircuits in the medial entorhinal cortex (MEC) and their role in network activity are little investigated. Using a combination of electrophysiological, optical, and morphological circuit analysis tools, we find that layer II stellate cells are embedded in a dense local inhibitory microcircuit. Specifically, we report a gradient of inhibitory inputs along the dorsoventral axis of the MEC, with the majority of this local inhibition arising from parvalbumin positive (PV+) interneurons. Finally, the gradient of PV+ fibers is accompanied by a gradient in the power of extracellular network oscillations in the gamma range, measured both in vitro and in vivo. The reported differences in the inhibitory microcircuitry in layer II of the MEC may therefore have a profound functional impact on the computational working principles at different locations of the entorhinal network and influence the input pathways to the hippocampus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.