Abstract

The efficacy of Ligularia fischeri (LF) for managing diabetic complications was evaluated by assessing inhibitory effects against advanced glycation end product (AGE) formation, rat lens aldose reductase (RLAR), and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging. The ethyl acetate fraction from 70% ethanol extracts of LF showed the highest DPPH radical scavenging activity of 53.90% at a concentration of 3.3 μg/mL. The ethyl acetate fraction exhibited the most potent AGE formation inhibition of 73.57% at a concentration of 55 μg/mL and showed the most potent RLAR inhibition of 88.97% at a concentration of 11.11 μg/mL. The ethyl acetate fraction exhibited the most potent antioxidant and anti-diabetic effects. Nuclear magnetic resonance via bioactivity-guided fractionation of the LF ethyl acetate fraction revealed that 3,4-dicaffeoylquinic acid was the bioactive compound. This compound from LF can be effective for prevention or treatment of diabetic complications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call