Abstract

This study focuses on a comparison of the microbial toxicity of nine metals, including As as a metalloid and two species of Cr. A loess soil [Ap horizon, clay 15.2%, organic C 1.12%, pH(CaCl2) 7.02] was spiked with 8–12 geometrically increasing doses of the metals. The dehydrogenase assay (2-p-iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride method) was combined with sorption and solubility experiments. The resulting dose-response curves and sorption isotherms were used to derive total doses that caused definite percentage inhibitions [i.e. effective doses (ED) causing a 10–90% reduction in dehydrogenase activity (dha)] as well as the corresponding toxic solution concentrations causing the same reductions in dha (i.e. effective concentrations; EC10–EC90). Based on total doses, the toxicity decreased in the following order with ED50 values (mg kg–1) given in brackets: Hg (2.0)>Cu (35)>Cr(VI) (71)>Cr(III) (75)>Cd (90)>Ni (100)>Zn (115)>As (168)>Co (582)>Pb (652). With regard to solution concentrations, toxicity decreased in the order (EC50 in mg l–1): Hg (0.003)>Pb (0.04)>Cu (0.05)>Cd (0.14)>Zn (0.19)>Cr(III) (0.62)>Ni (0.69)>Co (30.6)>As (55.5)>Cr(VI) (78.1). The retention of the metals by the soil differed strongly. Pb, Cu, and Hg exhibited the highest and Ni, As, and Cr(VI) the lowest sorption constants (Freundlich K values: 2455, 724, 348, 93, 13, and 0.06 mg kg–1, respectively). The sorptivity of the metals and their microbial toxicity in the aqueous phase were characteristically related: metals with a strong toxic action in the soil solution were adsorbed by the soil to a high degree and vice versa. Therefore, especially for metals with a high inherent toxicity, sorption is an effective way of immobilizing them and temporarily detoxifying soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.