Abstract
Excessive production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines from activated microglia in the central nervous system contributes to uncontrolled inflammation in neurodegenerative disorders. In this study, we investigated the anti-inflammatory activities of the methylene chloride fraction of JP05 (JP05-MC) on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated BV2 mouse microglial cells, and its mechanism of action. JP05-MC significantly inhibited LPS-induced production of NO and the proinflammatory cytokines, TNF-α and IL-6, in BV2 cells. JP05-MC also attenuated the mRNA expression and protein levels of inducible nitric oxide synthase in LPS-induced BV2 cells. JP05-MC significantly attenuated LPS-elicited phosphorylation of the mitogen-activated protein kinase (MAPK), extracellular-signal-regulated kinase 1/2, and nuclear factor-κB (NF-κB) nuclear translocation in BV2 cells. Our results indicate that JP05-MC exerts anti-inflammatory properties via downregulation of inflammatory mediator gene transcription by suppressing the MAPK and NF-κB pathways, suggesting that JP05-MC may have therapeutic potential as an anti-inflammatory agent in neurodegenerative diseases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.