Abstract

Kinetic and enzymatic inhibition experiments were performed to investigate the effects of methanethiol (MT) and hydrogen sulfide (H2S) on methane oxidation by a methane-oxidizing consortium. In the coexistence of MT and H2S, the oxidation of methane was delayed until MT and H2S were completely degraded. MT and H2S could be degraded, both with and without methane. The kinetic analysis revealed that the methane-oxidizing consortium showed a maximum methane oxidation rate (Vmax) of 3.7 mmol g-dry cell weight (DCW)(-1) h(-1) and a saturation constant (Km) of 184.1 μM. MT and H2S show competitive inhibition on methane oxidation, with inhibition values (Ki) of 1504.8 and 359.8 μM, respectively. MT was primary removed by particulate methane monooxygenases (pMMO) of the consortium, while H2S was degraded by the other microorganisms or enzymes in the consortium. DNA and mRNA transcript levels of the pmoA gene expressions were decreased to ∼10(6) and 10(3)pmoA gene copy number g-DCW(-1) after MT and H2S degradation, respectively; however, both the amount of the DNA and mRNA transcript recovered their initial levels of ∼10(7) and 10(5)pmoA gene copy number g-DCW(-1) after methane oxidation, respectively. The gene expression results indicate that the pmoA gene could be rapidly reproducible after methane oxidation. This study provides comprehensive information of kinetic interactions between methane and sulfur compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.