Abstract
ABSTRACTInhalation of fine particulate matter (PM2.5) is associated with elevated pulmonary injury attributed to the loss of vascular barrier integrity. Black ginseng (BG), steamed 9 times and dried ginseng, and its major protopanaxatriol type ginsenosides (ginsenoside Rg4, Rg6, Rh4, Rh1, and Rg2) exhibited various biological activities including anti-septic, anti-diabetic, wound healing, immune-stimulatory, and anti-antioxidant activity. The aim of this study was to investigate the beneficial effects of Rgx365 (a protopanaxatriol type rare ginsenosides fraction) on PM-induced lung endothelial cell (EC) barrier disruption and pulmonary inflammation. Permeability, leukocyte migration, activation of proinflammatory proteins, generation of reactive oxygen species (ROS), and histology were examined in PM2.5-treated EC and mice. Rgx365 significantly scavenged PM2.5-induced ROS, inhibited ROS-induced activation of p38 mitogen-activated protein kinase (MAPK), activated Akt in purified pulmonary EC, which helped maintain endothelial integrity. Further, Rgx365 reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in bronchoalveolar lavage fluids in PM-induced mouse lung tissues. Data suggested that Rgx365 might exhibit protective effects in PM-induced inflammatory lung injury and vascular hyperpermeability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Toxicology and Environmental Health, Part A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.