Abstract

Diabetes-associated cardiac fibrosis is a severe cardiovascular complication. Momordicine I, a bioactive triterpenoid isolated from bitter melon, has been demonstrated to have antidiabetic properties. This study investigated the effects of momordicine I on high-glucose-induced cardiac fibroblast activation. Rat cardiac fibroblasts were cultured in a high-glucose (25 mM) medium in the absence or presence of momordicine I, and the changes in collagen synthesis, transforming growth factor-β1 (TGF-β1) production, and related signaling molecules were assessed. Increased oxidative stress plays a critical role in the development of high-glucose-induced cardiac fibrosis; we further explored momordicine I's antioxidant activity and its effect on fibroblasts. Our data revealed that a high-glucose condition promoted fibroblast proliferation and collagen synthesis and these effects were abolished by momordicine I (0.3 and 1 μM) pretreatment. Furthermore, the inhibitory effect of momordicine I on high-glucose-induced fibroblast activation may be associated with its activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the inhibition of reactive oxygen species formation, TGF-β1 production, and Smad2/3 phosphorylation. The addition of brusatol (a selective inhibitor of Nrf2) or Nrf2 siRNA significantly abolished the inhibitory effect of momordicine I on fibroblast activation. Our findings revealed that the antifibrotic effect of momordicine I was mediated, at least partially, by the inhibition of the TGF-β1/Smad pathway, fibroblast proliferation, and collagen synthesis through Nrf2 activation. Thus, this work provides crucial insights into the molecular pathways for the clinical application of momordicine I for treating diabetes-associated cardiac fibrosis.

Highlights

  • The prevalence of diabetes mellitus (DM) is rapidly increasing, and cardiovascular complications are the principal causes of morbidity and mortality among patients with DM

  • Rat cardiac fibroblasts were treated with various concentrations of momordicine I, and cell viability was determined through MTT assay

  • Our study demonstrated that brusatol or nuclear factor erythroid 2-related factor 2 (Nrf2) siRNA significantly reversed the inhibitory effect of momordicine I on high-glucose-induced fibroblast activation and transforming growth factor-β1 (TGF-β1) expression

Read more

Summary

Introduction

The prevalence of diabetes mellitus (DM) is rapidly increasing, and cardiovascular complications are the principal causes of morbidity and mortality among patients with DM. The Framingham study reported a 2.4-fold increase in the incidence of heart failure in diabetic men and a 5-fold increase in diabetic women [1, 2]. Diabetic cardiomyopathy (DCM), which was first introduced in 1972 by Rubler et al, is one of the most severe irreversible complications of DM [3]. DCM is characterized by myocardial fibrosis, left ventricular hypertrophy, and compromised left ventricular systolic and diastolic functions [2, 4, 5]. Left ventricular diastolic dysfunction is a major characteristic of DCM, and recent studies revealed that over 50% of asymptomatic diabetic patients have diastolic dysfunction [1, 6]. Cardiac fibroblasts are enmeshed in the myocardium and play a crucial role in maintaining the integrity and homeostasis of the interstitial

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call