Abstract

Prostate cancer cells commonly spread through the circulation, but few successfully generate metastatic foci in bone. Osteoclastic cellular activity has been proposed as an initiating event for skeletal metastasis. Megakaryocytes (MKs) inhibit osteoclastogenesis, which could have an impact on tumor establishment in bone. Given the location of mature MKs at vascular sinusoids, they may be the first cells to physically encounter cancer cells as they enter the bone marrow. Identification of the interaction between MKs and prostate cancer cells was the focus of this study. K562 (human MK precursors) and primary MKs derived from mouse bone marrow hematopoietic precursor cells potently suppressed prostate carcinoma PC-3 cells in coculture. The inhibitory effects were specific to prostate carcinoma cells and were enhanced by direct cell-cell contact. Flow cytometry for propidium iodide (PI) and annexin V supported a proapoptotic role for K562 cells in limiting PC-3 cells. Gene expression analysis revealed reduced mRNA levels for cyclin D1, whereas mRNA levels of apoptosis-associated specklike protein containing a CARD (ASC) and death-associated protein kinase 1 (DAPK1) were increased in PC-3 cells after coculture with K562 cells. Recombinant thrombopoietin (TPO) was used to expand MKs in the marrow and resulted in decreased skeletal lesion development after intracardiac tumor inoculation. These novel findings suggest a potent inhibitory role of MKs in prostate carcinoma cell growth in vitro and in vivo. This new finding, of an interaction of metastatic tumors and hematopoietic cells during tumor colonization in bone, ultimately will lead to improved therapeutic interventions for prostate cancer patients. © 2011 American Society for Bone and Mineral Research.

Highlights

  • Prostate cancer is the most common malignancy in American men

  • When induced by phorbol myristate acetate (PMA), K562 cells differentiate into MKs accompanied by a net increase in megakaryocytic markers and a reduction in erythroid markers.[24]. K562 cells, with or without PMA pretreatment, were cocultured with the prostate carcinoma cell line PC-3 previously labeled with a luciferase tag

  • K562 cells and MKs derived either from K562 cells or mouse bone marrow cells suppressed prostate carcinoma cell growth, whereas erythroid cells derived from K562 cells and another leukemia cell line, HL60, which differentiates along the macrophage or neutrophil lineage, had negligible effects

Read more

Summary

Introduction

Prostate cancer is the most common malignancy in American men It alone accounts for about 25% of cancer cases in men.[1] Bone metastasis is the major cause of mortality associated with prostate cancer and affects up to 90% of patients dying with advanced disease.[2] The classic concept that circulating tumor cells need ‘‘congenial soil’’ to ‘‘seed’’ has stimulated attention focused on understanding the dynamic migratory abilities of tumor cells.[3] understanding the characteristics and early changes occurring in the bone marrow microenvironment that welcome incoming cancer cells is still lacking. MSCs reside in the bone and give rise to the majority of marrow stromal cell lineages, including chondrocytes, osteoblasts, fibroblasts, adipocytes, endothelial cells, and myocytes.[5,6] Developing hematopoietic cells in the bone marrow are retained until they mature and are released into the circulation.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.