Abstract

AimsSeveral anti-melanogenic molecules have been developed or identified, but their uses are limited due to either adverse effects or instability during the treatment. We aimed to evaluate the effects of extracellular superoxide dismutase (SOD3), a powerful antioxidant, as a candidate anti-melanogenic molecule. Main methodsUVB-induced reactive oxygen species (ROS) production and proliferation in melan-a cells was evaluated by 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate staining and bromodeoxyuridine incorporation assay, respectively. Quantitative real-time polymerase chain reaction and western blot were performed to detect the melanogenesis-related gene expression and downstream signaling. Anti-melanogenic effects of SOD3 were also evaluated using SOD3 transgenic mice under UVB exposure in-vivo condition. Key findingsSOD3 inhibited UVB-induced proliferation, ROS production and melanogenesis in melanocytes. Measurement of melanin content and tyrosinase activity assays showed that SOD3 significantly inhibited melanin synthesis. Moreover, these suppressive effects of SOD3 were dependent on the endothelin-1 (ET-1)/endothelin B receptor, protein kinase C, melanocortin 1 receptor/protein kinase A, Wnt7a/β-catenin, and mitogen-activated protein kinase pathways, with concomitant downregulation of microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related proteins 1, dopachrome tautomerse. Interestingly, SOD3 was found to inhibit transforming growth factor-beta 1 (TGF-β1) to inactivate the ET-1 signaling pathway, and finally prevents the production of melanin. SignificanceOur results provide novel insights into the role of SOD3 in melanocyte homeostasis and its uses as a potential biomedicine to treat hyperpigmentary conditions of the skin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call