Abstract

Neurogenesis, a process of generation of new neurons, occurs throughout the life in the hippocampus and sub-ventricular zone (SVZ). Bisphenol-A (BPA), an endocrine disrupter used as surface coating for packaged food cans, injures the developing and adult brain. However, the effects of BPA on neurogenesis and underlying cellular and molecular mechanism(s) are still unknown. Herein, we studied the effect(s) of prenatal and early postnatal exposure of low dose BPA on Wnt/β-catenin signaling pathway that controls different steps of neurogenesis such as neural stem cell (NSC) proliferation and neuronal differentiation. Pregnant rats were treated with 4, 40, and 400 μg BPA/kg body weight orally daily from gestational day 6 to postnatal day 21. Both in vivo and in vitro studies showed that BPA alters NSC proliferation and differentiation. BPA impaired NSC proliferation (5'-bromo-2'-deoxyuridine (BrdU(+)) and nestin(+) cells) and neuronal differentiation (BrdU/doublecortin(+) and BrdU/neuronal nuclei (NeuN(+)) cells) in the hippocampus and SVZ as compared to control. It significantly altered expression/protein levels of neurogenic genes and the Wnt pathway genes in the hippocampus. BPA reduced cellular β-catenin and p-GSK-3β levels and decreased β-catenin nuclear translocation, and cyclin-D1 and TCF/LEF promoter luciferase activity. Specific activation and blockage of the Wnt pathway suggested involvement of this pathway in BPA-mediated inhibition of neurogenesis. Further, blockage of GSK-3β activity by SB415286 and GSK-3β small interfering RNA (siRNA) attenuated BPA-induced downregulation of neurogenesis. Overall, these results suggest significant inhibitory effects of BPA on NSC proliferation and differentiation in the rat via the Wnt/β-catenin signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.