Abstract

The effects of 2,6-di-O-methyl-3-O-acetyl-β-cyclodextrins (DMA-β-CyD) with various degrees of substitution (DS) of an acetyl group of 1.5, 3.8, 6.3 and 7, which are abbreviated to DMA2-β-CyD, DMA4-β-CyD, DMA6-β-CyD and DMA7-β-CyD, respectively, on murine macrophage activation and endotoxin shock induced by lipopolysaccharide (LPS) were examined. Of four DMA-β-CyDs used in the present study, cytotoxicity of DMA-β-CyDs in RAW264.7 cells, a murine macrophage-like cell line, decreased with an increase in the DS values of DMA-β-CyD, and DMA7-β-CyD had no cytotoxicity on RAW264.7 cells up to 100 mM. DMA2-β-CyD and DMA7-β-CyD at the concentration of 5 mM had greater inhibitory effects on nitric oxide (NO) production in RAW264.7 cells stimulated with LPS than DMA4-β-CyD and DMA6-β-CyD. In addition, these inhibitory effects of DMA2-β-CyD and DMA7-β-CyD were concentration-dependent. In the in vivo study, all of the mice died within 12 h after intraperitoneal administration of the solution containing LPS and d-galactosamine. When 100 mM DMA7-β-CyD was concomitantly administered with both LPS and d-galactosamine intraperitoneally in mice, the survival rate significantly increased, but DMA4-β-CyD and DMA6-β-CyD did not. In conclusion, we revealed that DS values of DMA-β-CyDs strikingly affect not only the cytotoxic activity but also the inhibitory effects of LPS-induced NO production in RAW264.7 cells and fatality of endotoxin shock mice induced by LPS and d-galactosamine. These results suggest the potential use of DMA7-β-CyD as an antagonist of LPS-induced endotoxin shock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call