Abstract

Purpose: Neuroinflammation is mediated by activation of microglia implicated in the pathogenesis of neurodegenerative disorders such as Alzheimers disease and Parkinsons disease. Inhibition of neuroinflammation may be an effective solution to treat these brain disorders. Petalonia binghamiae is known as a traditional food, based on multiple biological activities such as anti-oxidant and anti-obesity. In present study, the anti-neuroinflammatory potential of Petalonia binghamiae was investigated in LPS-stimulated BV2 microglial cells. Methods: Cell viability was measured by MTT assay. Production of nitric oxide (NO) was examined using Griess reagent. Expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was detected by Western blot analysis. Activation of nuclear factor κB (NF-κB) signaling was examined by nuclear translocation of NF-κB p65 subunit and phosphorylation of IκB. Results: Extract of Petalonia binghamiae significantly inhibited LPS-stimulated NO production and iNOS/COX-2 protein expression in a dose-dependent manner without cytotoxicity. Pretreatment with Petalonia binghamiae suppressed LPS-induced NF-κB p65 nuclear translocation and phosphorylation of IκB. Co-treatment with Petalonia binghamiae and pyrrolidine duthiocarbamate (PDTC), an NF-κB inhibitor, reduced LPS-stimulated NO release compared to that in PB-treated or PDTC-treated cells. Conclusion: The present results indicate that extract of Petalonia binghamiae exerts anti-neuroinflammation activities, partly through inhibition of NF-κB signaling. These findings suggest that Petalonia binghamiae might have therapeutic potential in relation to neuroinflammation and neurodegenerative diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call