Abstract

Aims: Hepatic fibrosis results from chronic liver injury and inflammatory responses. Sestrin 2 (Sesn2), an evolutionarily conserved antioxidant enzyme, reduces the severities of acute hepatitis and metabolic liver diseases. However, the role of Sesn2 in the pathogenesis of liver fibrosis remains obscure. Here, we used cultured hepatic stellate cells (HSCs) and chronic carbon tetrachloride (CCl4) and bile duct ligation (BDL) murine models to investigate the effects of Sesn2 on fibrogenesis. Results: Sesn2 protein and mRNA levels were upregulated in activated primary HSCs, and by increasing transcription, transforming growth factor-β (TGF-β) also increased Sesn2 expression in HSCs. Furthermore, Smad activation was primarily initiated by TGF-β signaling, and Smad3 activation increased Sesn2 luciferase activity. In silico analysis of the 5' upstream region of the Sesn2 gene revealed a putative Smad-binding element (SBE), and its deletion demonstrated that the SBE between -964 and -956 bp within human Sesn2 promoter was critically required for TGF-β-mediated response. Moreover, ectopic expression of Sesn2 reduced gene expressions associated with HSC activation, and this was accompanied by marked decreases in SBE luciferase activity and Smad phosphorylation. Infection of recombinant adenovirus Sesn2 reduced hepatic injury severity, as evidenced by reductions in CCl4- or BDL-induced alanine aminotransferase and aspartate aminotransferase, and inhibited collagen accumulation. Furthermore, HSC-specific lentiviral delivery of Sesn2 prevented CCl4-induced liver fibrosis. Finally, Sesn2 expression was downregulated in the livers of patients with liver cirrhosis and in mouse models of hepatic fibrosis. Innovation and Conclusion: Our findings suggest that Sesn2 has the potential to inhibit HSC activation and hepatic fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.