Abstract

Rosmarinic acid (RA), a polyphenol from edible-medical Lamiaceae herbs, is known to possess a variety of pharmacological activity, like anti-inflammatory, hepatoprotective and immunoregulation activities. Hereon, we investigated the anti-allergic activity of RA on immunoglobulin E (IgE)-mediated anaphylaxis responses in rat basophilic leukemia (RBL)-2H3 mast cell. RA hindered the morphological changes of IgE-induced degranulated RBL-2H3 cells. The release of two key biomarkers (β-hexosaminidase (β-HEX) and histamine) of IgE-induced degranulated mast cells was also remarkably down-regulated by RA intervention in a dose dependent manner. Moreover, RA inhibited IgE-induced ROS overproduction and flux of intracellular Ca2+ in IgE-mediated degranulated mast cells. The q-PCR analysis showed that the expressions of genes (COX 2, PGD 2, LTC 4, HDC, Nrf2, HO-1 and NQO1) involved in MAPK and oxidative stress signaling pathways were significantly regulated by RA intervention. Moreover, the degranulation inhibitory effect of rosmarinic acid was investigated on the anti-DNP IgE/DNP-HSA induced passive cutaneous anaphylaxis (PCA) mice model in vivo. It showed that RA significantly inhibited the PCA reaction and allergic edema of ears in anti-DNP IgE/DNP-HSA stimulated mice. These findings suggest that RA has the potential to be used as a therapeutic candidate for allergic diseases by inhibiting mast cell degranulation. This indicates a possible role for RA in managing allergic reactions and related conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call