Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) agonists have been reported to enhance antioxidant defenses by increasing levels of catalase and copper-zinc superoxide dismutase (Cu/Zn SOD) in oligodendrocyte progenitor cells. In this study, we investigated the effects of the PPARγ agonist, rosiglitazone, on hydrogen peroxide (H(2)O(2)) generation by acidified medium at pH5.5 (AM5.5), which is in the pH range of duodenogastric refluxates, in primary cultured feline esophageal epithelial cells (EEC). Successful isolation of EEC was identified by immunocytochemistry. AM5.5- and rosiglitazone-induced cell viabilities were determined using 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide assays. The NAD(P)H oxidase activity was measured, and expression of catalase or SOD protein by AM5.5 in the absence and presence of rosiglitazone was assessed using western blotting analysis. PPARγ protein and mRNA were constitutively expressed in EEC. In the incubation with rosiglitazone alone, cell viability was shown more than 90% at 0-10μM for 72h. After exposure to AM5.5 for 8h, intracellular H(2)O(2) was significantly generated. Treatment with rosiglitazone prior to and during exposure to AM5.5 inhibited the H(2)O(2) generation whereas the specific PPARγ antagonist GW9662 offsets the inhibitory action of rosiglitazone. H(2)O(2) generation was also prevented by a nonspecific ROS scavenger N-acetylcysteine or an inhibitor of NADPH oxidase diphenyleneiodonium. The enhanced AM5.5-induced NAD(P)H oxidase activity was not suppressed by rosiglitazone. Instead, the pretreatment of rosiglitazone enhanced the protein expression of catalase, Cu/Zn SOD, and Mn SOD, which are endogenous antioxidative enzymes. These findings indicate that rosiglitazone inhibits AM5.5-induced intracellular H(2)O(2) production, which occurs via NAD(P)H oxidase activation, by using a PPARγ-dependent pathway, and that the underlying mechanism involves an increase in the expression of catalase and SOD proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.