Abstract

The effect of prostaglandin E2 (PGE2), forskolin, and dibutyryl cAMP on arachidonic acid release, inositol phospholipid metabolism, and Ca2+ mobilization was investigated. The chemotactic tripeptide (formylmethionyl-leucyl-phenylalanine (fMLP))-induced arachidonic acid release in neutrophils was significantly inhibited by PGE2, forskolin, and dibutyryl cAMP. Among them, PGE2 was found to be the most potent inhibitor. However, when neutrophils were stimulated by Ca2+ ionophore A23187, such inhibitory effect by these agents was less marked. PGE2 also suppressed the enhanced incorporation of [32P]Pi into phosphatidic acid (PA) and phosphatidylinositol in a dose-dependent manner in fMLP-stimulated neutrophils. Also in this case, Ca2+ ionophore-induced alterations were hardly inhibited by PGE2. As well, PGE2 inhibited the fMLP-induced decrease of [3H]arachidonic acid in phosphatidylcholine and phosphatidylinositol and the increase in PA very significantly. But the inhibitory effect by PGE2 was found to be weak in Ca2+ ionophore-stimulated neutrophils. These results suggest that a certain step from receptor activation to Ca2+ influx is mainly inhibited by PGE2. Concerning polyphosphoinositide breakdown, PGE2 did not affect the fMLP-induced decrease of [32P]phosphatidylinositol 4,5-bisphosphate which occurred within 10 s but inhibited the subsequent loss of [32P]phosphatidylinositol 4-phosphate and [32P]phosphatidylinositol, suggesting that the compensatory resynthesis of phosphatidylinositol 4,5-bisphosphate was inhibited. On the other hand, fMLP-induced diacylglycerol formation was suppressed for the early period until 1 min, but with further incubation, diacylglycerol formation was rather accelerated by PGE2. Moreover, the inhibition of PA formation by PGE2 became evident after a 30-s time lag, suggesting that the conversion of diacylglycerol to PA is inhibited by PGE2. The formation of water-soluble products of inositol phospholipid degradation by phospholipase C, such as inositol phosphate, inositol 1,4-bisphosphate, and inositol 1,4,5-trisphosphate, was also suppressed by PGE2 treatment. However, the inhibition was not so marked as that of arachidonic acid release and PA formation. Thus, PGE2 appeared to inhibit not only initial events such as polyphosphoinositide breakdown but also turnover of inositol phospholipids. PGE2, forskolin, and dibutyryl cAMP did not block the rapid elevation of intracellular Ca2+ which was observed within 10 s in fMLP-stimulated neutrophils. However, subsequent increase in intracellular Ca2+ which was caused from 10 s to 3 min after stimulation was inhibited by PGE2, forskolin, and dibutyryl cAMP.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.