Abstract

BackgroundLong-term treatment of chronic hepatitis B (CHB) with nucleos(t)ide analogs results in the emergence of drug-resistant hepatitis B virus (HBV) harboring mutations in the polymerase (P) gene. The Phyllanthus extract has anti-HBV activity; however, its antiviral activity against lamivudine (LMV)-resistant mutants has not been examined.MethodsHBV harboring LMV-resistant mutations (rtM204I, rtM204V, and rtM204S) in the P gene at the YMDD (203tyrosine-methionine-aspartate-aspartate206) reverse transcriptase (RT) active site were generated and their sensitivity to Phyllanthus urinaria koreanis extract examined. Southern blotting and real-time PCR were used to determine the concentration of plant extract required to inhibit HBV DNA synthesis by 50 and 90 % (EC50 and EC90, respectively). An enzyme-linked immunosorbent assay was used to measure the EC50 of HBV surface antigen (HBsAg) and HBV core antigen (HBcAg) secretion, and the 50 % cytotoxic concentration of the extract was measured in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Real-time RT-PCR was used to measure mRNA expression levels.ResultsThe expression of intracellular HBV DNAs in HBV WT- or mutant-transfected HepG2 cells decreased upon treatment with Phyllanthus extract. The secretion of HBsAg and HBcAg also fell in a dose-dependent manner. Phyllanthus extract induced interferon-beta (IFN-β), cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) mRNA expression in HBV WT-transfected HepG2 cells, possibly via activation of extracellular signal-regulated kinases and c-jun N-terminal kinases and the induction of retinoic acid inducible gene-I, toll-like receptor 3, myeloid differentiation primary response gene 88, and/or tumor necrosis factor receptor-associated factor 6 gene expression. HBV transfection in the absence of extract or exposure of cells to extract alone did not trigger these signaling cascades.ConclusionsPhyllanthus extract inhibited HBV DNA synthesis and HBsAg and HBcAg secretion by replicating cells harboring HBV wild-type and LMV-resistant mutants, likely by inducing the expression of IFN-β, COX-2, and IL-6. These data indicate that Phyllanthus extract may be useful as an alternative therapeutic agent for the treatment of drug-resistant CHB patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-015-0792-3) contains supplementary material, which is available to authorized users.

Highlights

  • Long-term treatment of chronic hepatitis B (CHB) with nucleos(t)ide analogs results in the emergence of drug-resistant hepatitis B virus (HBV) harboring mutations in the polymerase (P) gene

  • Led to a significant reduction in HBV DNA synthesis (Fig. 2a, lane 2) without affecting the secretion of HBV surface antigen (HBsAg) and HBV core antigen (HBcAg) (Fig. 2b, lane 2). It is not known whether Phyllanthus extract affects C protein expression, core particle formation, and pregenomic RNA (pgRNA) encapsidation; we examined these parameters in HBV WT-transfected/extract-treated HepG2 cells (Fig. 2c-d)

  • PgRNA encapsidation was not affected (Fig. 2d). These results suggest that Phyllanthus extract inhibits HBV DNA synthesis and the secretion of HBsAg and HBcAg without affecting core particle formation and pgRNA encapsidation

Read more

Summary

Introduction

Long-term treatment of chronic hepatitis B (CHB) with nucleos(t)ide analogs results in the emergence of drug-resistant hepatitis B virus (HBV) harboring mutations in the polymerase (P) gene. The Phyllanthus extract has anti-HBV activity; its antiviral activity against lamivudine (LMV)-resistant mutants has not been examined. More than 2 billion people worldwide are infected with the hepatitis B virus (HBV), of whom 400 million are chronically infected. Interferons (IFNs) and several nucleos(t)ide analogs including lamivudine (LMV), adefovir dipivoxil (ADV), entecavir (ETV), tenofovir (TDF), and telbivudine (LdT), are approved for the treatment of chronic hepatitis B (CHB) in most countries [5]. Nucleos(t)ide analogs inhibit the reverse transcriptase (RT) activity of the HBV DNA polymerase (P), thereby interrupting the elongation of newly synthesized DNA. The drugs lower alanine aminotransferase levels, reduce serum HBV DNA levels, and induce seroconversion of HBV e antigen (HBeAg) to anti-HBe in CHB patients

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call