Abstract

Age-related macular degeneration (AMD), often triggered by endothelial barrier disruption through vascular endothelial growth factor (VEGF), is a leading cause of blindness. This study investigated the inhibitory effects of phenolic compounds on VEGF-induced endothelial cell proliferation, migration, angiogenesis, and permeability using human retinal microvascular endothelial cells (hRECs). Thirty-seven polyphenolic compounds were selected from various databases based on their antioxidant properties, abundance in food, and solubility. These compounds significantly reduced migration, tube formation, and endothelial permeability in VEGF-stimulated hRECs. Notably, formononetin, eriodictyol, biochanin A, and p-coumaric acid were more effective in suppressing VEGF-induced angiogenesis and endothelial permeability than lutein. Molecular docking simulations revealed that formononetin, eriodictyol, and biochanin A had relatively lower binding energies with VEGF receptor 2 (VEGFR2) than lutein and sorafenib. These findings highlight the potential of phenolic compounds to be used as VEGFR2 inhibitors and an alternative strategy for preventing AMD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.