Abstract

AbstractIn this paper, we studied the inhibitory effect of oleanolic acid (OA) on non-enzymatic glycosylation and the improvement of glycometabolism in insulin resistant (IR) human liver tumour (HepG2) cells. The anti-glycosylation activity of OA was determined by bovine serum albumin (BSA) fructose model. The results showed that OA moderately inhibited the formation of the intermediates of non-enzymatic glycosylation, fructosamine and α-dicarbonyl compounds, and strongly inhibited the formation of advanced glycation end products (AGEs). In addition, we analysed the effect of OA on glycometabolism induced by palmitic acid (PA) in HepG2 cells. The results showed that OA had almost no impact on HepG2 cell viability at concentrations lower than 30 µM. With the increase of OA concentration, glucose production in IR HepG2 cells decreased, while glycogen content increased. Meanwhile, OA has a significant inhibitory effect on reactive oxygen species (ROS) levels in IR-HepG2 cells. Those results suggested that OA could be a promising natural blood glucose decreasing substance in the pharmaceutical and functional food industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call