Abstract

Objective: Plasmodium parasites are the cause of malaria. Malaria victims get infected upon being bitten by female anopheles mosquito; which transmits the parasite to the victim. The P. falciparum and P. vivax are the most active disease-causing agents of all five malaria-causing species of Plasmodium. The anti-folate drugs which were the first class of clinical antimetabolites act by disrupting metabolic pathways in which the one-carbon moiety supplied by the B9 folate vitamins is a major requirement.
 Methods: Chemical structures of the anti-folate drugs which served as the experimental control ligands were downloaded from the PubChem database and saved as PDB files while the gedunin modification was achieved using the Marvin-Sketch software.
 Results: Molecular visualization of the polar interactions with amino acid residues of the Plasmodium falciparum dihydrofolate-reductase showed that all the control ligands interacted with similar residues contrary to the interaction of the gedunin modified ligand in the same binding pocket.
 Conclusion: Results from the molecular docking study showed that gedunin and its C=O of gedunin might be better antimalarial agents; having exhibited the best binding energies with a score of -9.5 and -9.0 Kcal/mol respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call