Abstract

Backgroundent-Sauchinone is a polyphenolic compound found in plants belonging to the lignan family. ent-Sauchinone has been shown to modulate the expression of inflammatory factors through the nuclear factor-kappa B (NF-κB) signaling pathway. It is well known that neuroinflammation is associated with amyloidogenesis. Thus, in the present study, we investigated whether ent-Sauchinone could have anti-amyloidogenic effects through the inhibition of NF-κB pathways via its anti-inflammatory property.MethodsTo investigate the potential effect of ent-Sauchinone on anti-neuroinflammation and anti-amyloidogenesis in in vitro studies, we used microglial BV-2 cells and cultured astrocytes treated with ent-Sauchinone (1, 5, and 10 μM) for 24 hours. For the detection of anti-neuro-inflammatory responses, reative oxygen species (ROS) and Nitric oxide (NO) generation and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were measured with assay kits and western blotting. β-secretase and β-secretase activities and β-amyloid levels were determined for measuring the anti-amyloidogenic effects of ent-Sauchinone by enzyme assay kits. NF-κB and STAT3 signals were detected with electromobility shift assay (EMSA) to study the related signaling pathways. The binding of ent-Sauchinone to STAT3 was evaluated by a pull-down assay and by a docking model using Autodock VINA software (Hoover’s Inc., Texas, United states).Resultsent-Sauchinone (1, 5, and 10 μM) effectively decreased lipopolysaccharide (LPS)-(1 μg/ml) induced inflammatory responses through the reduction of ROS and NO generations and iNOS and COX-2 expressions in cultured astrocytes and microglial BV-2 cells. ent-Sauchinone also inhibited LPS-induced amyloidogenesis through the inhibition of β-secretase and β-secretase activity. NF- κB amyloid and STAT3, critical transcriptional factors regulating not only inflammation but also amyloidogenesis, were also inhibited in a concentration dependent manner by ent-Sauchinone by blocking the phosphorylation of I κB and STAT3 in cultured astrocytes and microglial BV-2 cells. The docking model approach showed that ent-Sauchinone binds to STAT3, and the employment of a STAT3 inhibitor and siRNA reversed ent-Sauchinone-induced inhibition NF-κB activation and Aβ generation.ConclusionsThese results indicated that ent-Sauchinone inhibited neuroinflammation and amyloidogenesis through the inhibition of STAT3-mediated NF-κB activity, and thus could be applied in the treatment of neuro-inflammatory diseases, including Alzheimer’s disease.

Highlights

  • Alzheimer’s disease (AD) is an age-related neurodegenerative disease characterized by the accumulation of beta amyloid (A), an insoluble peptide deposited extracellularly in the brain, causing senile plaques [1]

  • The docking model approach showed that ent-Sauchinone binds to Signal transducer and activator of transcription 3 (STAT3), and the employment of a STAT3 inhibitor and siRNA reversed ent-Sauchinone-induced inhibition nuclear factor-κB (NF-κB) activation and Amyloid-beta protein (Aβ) generation. These results indicated that ent-Sauchinone inhibited neuroinflammation and amyloidogenesis through the inhibition of STAT3-mediated NF-κB activity, and could be applied in the treatment of neuro-inflammatory diseases, including Alzheimer’s disease

  • Effect of ent-Sauchinone on astrocyte and microglial BV-2 cell viability Co-treatment with (1, 5, and 10 μM) ent-Sauchinone and 1 μg/ml LPS resulted in a slight increase in the cell viability of astrocytes (Additional file 1: Figure S1A) and microglial BV-2 cells (Additional file 1: Figure S1B)

Read more

Summary

Introduction

Alzheimer’s disease (AD) is an age-related neurodegenerative disease characterized by the accumulation of beta amyloid (A), an insoluble peptide deposited extracellularly in the brain, causing senile plaques [1]. This hydrophobic polypeptide is the product of proteolytic cleavage of the amyloid precursor protein (APP). McGeer et al suggested that antiinflammatory agents could be applicable for the treatment of patients with AD [11] These observations strongly suggest that anti-inflammatory agents could be effective for the prevention of AD prevalence through the reduction of A generation and/or deposition [12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.