Abstract

The effect of cyanide (CN(-) ) on nitrification was examined with samples from nitrifying bacterial enrichments using two different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), and by using RT-qPCR to quantify the transcripts of functional genes involved in nitrification. The nitrifying bioreactor was operated as a continuous reactor with a 24h hydraulic retention time. The samples were exposed in batch vessels to cyanide for a period of 12h. The concentrations of CN(-) used in the batch assays were 0·03, 0·06, 0·1 and 1·0mgl(-1) . There was considerable decrease in SOUR with increasing dosages of CN(-) . A decrease of more than 50% in nitrification activity was observed at 0·1mgl(-1) CN(-) . Based on the RT-qPCR data, there was notable reduction in the transcript levels of amoA and hao for increasing CN(-) dosage, which corresponded well with the ammonia oxidation activity measured via SOUR. The inhibitory effect of cyanide may be attributed to the affinity of cyanide to bind ferric haeme proteins, which disrupt protein structure and function. The correspondence between the relative expression offunctional genes and SOUR shown in this study demonstrates the efficacy of RNA-based function-specific assays for better understanding of the effect oftoxic compounds on nitrification activity in wastewater. The effect of cyanide on nitrifying bacteria was characterized by measuring physiological and transcriptional response. Cyanide was inhibitory to nitrification at concentrations that may be found in industrial waste. The RNA-based function-specific assays represent a mechanistic approach for better understanding the effect of toxic compounds on nitrification activity in wastewater. Moreover, the relative abundance of RNA transcripts can be used to closely track insitu nitrifying bacterial activity which can be used to predict inhibition events, thereby providing a metric to potentially improve performance of wastewater nitrifying systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.