Abstract

BackgroundThe accumulation of advanced glycation end products (AGEs) in body tissue has been implicated in the progression of age-related diseases. Inhibition of AGE formation is the imperative approach for alleviating diabetic complications. Clitoria ternatea extract (CTE) has been demonstrated to possess anti-diabetic activity. However, there is no scientific evidence supporting its anti-glycation activity. The objective of this study was to determine the inhibitory effect of CTE on fructose-induced formation of AGEs and protein oxidation. Antioxidant activity of CTE was also assessed by various methods.MethodsThe aqueous extract of CTE (0.25-1.00 mg/ml) was measured for the content of total phenolic compounds, flavonoid, and anthocyanin by Folin-Ciocalteu assay, AlCl3 colorimetric method, and pH differential method, respectively. The various concentrations of CTE were incubated with BSA and fructose at 37°C for 28 days. The formation of fluorescent AGEs, the level of fructosamine, protein carbonyl content, and thiol group were measured. The in vitro antioxidant activity was measured by the 1,1-diphenyl 2-picrylhydrazyl (DPPH) scavenging activity, trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP), hydroxyl radical scavenging activity (HRSA), superoxide radical scavenging activity (SRSA), and ferrous ion chelating power (FICP).ResultsThe results demonstrated that the content of total phenolics, flavonoids and total anthocyanins in CTE was 53 ± 0.34 mg gallic acid equivalents/g dried extract, 11.2 ± 0.33 mg catechin equivalents/g dried extract, and 1.46 ± 0.04 mg cyanidin-3-glucoside equivalents/g dried extract, respectively. Moreover, CTE (0.25-1.00 mg/ml) significantly inhibited the formation of AGEs in a concentration-dependent manner. CTE also markedly reduced the levels of fructosamine and the oxidation of protein by decreasing protein carbonyl content and preventing free thiol depletion. In the DPPH radical scavenging activity and SRSA, CTE had the IC50 values of 0.47 ± 0.01 mg/ml and 0.58 ± 0.04 mg/ml. Furthermore, the FRAP and TEAC values of CTE were 0.38 ± 0.01 mmol FeSO4 equivalents/mg dried extract and 0.17 ± 0.01 mg trolox equivalents/mg dried extract. However, CTE showed weak scavenging activity on hydroxyl radical and a weak antioxidant iron chelator.ConclusionsThe results showed that CTE has strong antiglycation and antioxidant properties and might have therapeutic potentials in the prevention of AGE-mediated diabetic complications.

Highlights

  • The accumulation of advanced glycation end products (AGEs) in body tissue has been implicated in the progression of age-related diseases

  • Diabetes Mellitus (DM) is a group of metabolic diseases characterized by hyperglycemia, dyslipidemia, and abnormal protein metabolism that result from defects in both insulin secretion and/or insulin action

  • Chemicals Bovine serum albumin (BSA), aminoguanidine (AG), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3ethylbenzothiazoline-6-sulfonic acid) (Trolox), 2,4, 6- tripyridyl-S-triazine (TPTZ), iron (II) sulfate (FeSO4), xanthine, xanthine oxidase, 5,5′-dithiobisnitro benzoic acid (DTNB), nitroblue tetrazolium (NBT), 1-deoxy-1morpholinofructose (DMF), 2,4-dinitrophenylhydrazine (DNPH), thioflavin T reagent (4-(3,6-dimethyl-1,3-benzothiazol-3-ium-2-yl)-N,N-dimethylaniline chloride), and L-cysteine were purchased from Sigma Chemical Co

Read more

Summary

Introduction

The accumulation of advanced glycation end products (AGEs) in body tissue has been implicated in the progression of age-related diseases. The objective of this study was to determine the inhibitory effect of CTE on fructose-induced formation of AGEs and protein oxidation. Chronic hyperglycemia is a major cause of complications of diabetes through 5 major mechanisms including polyol pathway, the formation of advanced glycation end products (AGEs), increased expression of AGEs receptor, Protein kinase C isoform activation and hexosamine pathway [1,2]. Intracellular fructose is increased in a number of tissues in diabetic patients via the polyol pathway, resulting in glycation production approximately 10 times faster than glucose [11]. Scientists are developing an alternative approach to preventing progression of diabetic complications through the reduction of AGE formation. There has been a great deal of interest in using plant-based foods for prevention and amelioration of AGE-mediated diabetic complications [4,14,15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call