Abstract

This study sought to determine the inhibitory effect of aqueous extract of different parts (bark, leaf, and flower) of cotton plant (Gossypium herbaceum) on key enzymes linked with type 2 diabetes and oxidative stress in rat pancreas in vitro. The aqueous extract (1:10 w/v) of Gossypium herbaceum was prepared and the ability of the extract to inhibit the activity of α-amylase and α-glucosidase as well as activities of pro-oxidant Fe2+-induced lipid peroxidation was determined spectrophotometrically. The results revealed that the three varieties were able to inhibit the activity of α-amylase and α-glucosidase in rat's pancreas in a dose dependent manner (0–88.8 mg/ml). Also, the incubation of pancreas tissue homogenate in the presence of Fe2+ caused a significant increase (233.3%) in the malondialdehyde (MDA) content of pancreas homogenate, nevertheless, the introduction of the aqueous extract inhibited MDA production dose dependently (0–33.33 mg/ml) and also exhibited further antioxidant properties as represented by their high radical scavenging and Fe2+ chelating abilities. Inhibition of α-amylase and α-glucosidase activities has been the primary treatment for the management/prevention of type 2 diabetes. Therefore, the α-amylase and α-glucosidase inhibitory activities of aqueous extracts of different parts of Gossypium herbaceum in rat pancreas and prevention of lipid peroxidation in the tissue may be attributed to the presence of polyphenol content of the plant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.