Abstract

The isolated cytochrome (cyt) b(6)f complex from spinach is inhibited by Cu(2+) with a K(D) of about 1 microM at pH 7.6 in the presence of 1.6 microM decyl-plastoquinol (C(10)-PQH(2)) as a substrate. Inhibition was competitive with respect to C(10)-PQH(2) but noncompetitive with respect to horse heart cyt c or plastocyanin (PC). Inhibition was also pH-sensitive, with an apparent pK at about 7, above which inhibition was stronger, suggesting that binding occurred at or near a protonatable amino acid residue. Equilibrium binding titrations revealed ca. 1.4 tight Cu(2+) binding sites with a K(D) of about 0.5 microM and multiple (>8) weak (K(D) > 50 microM) binding sites per complex. Pulsed electron paramagnetic resonance (EPR) techniques were used to identify probable binding sites for inhibitory Cu(2+). A distinct enhancement of the relaxation time constant for the EPR signal from bound Cu(2+) was observed when the cyt f was paramagnetic. The magnitude and temperature-dependence of this relaxation enhancement were consistent with a dipole interaction between Cu(2+) and the cyt f (Fe(3+)) heme at a distance of between 30 and 54 A, depending upon the relative orientations of Cu(2+) and cyt f heme g-tensors. Two-pulse electron spin-echo envelope modulation (ESEEM) and 4-pulse 2-dimensional hyperfine sublevel correlation (2D HYSCORE) measurements of Cu(2+) bound to isolated cyt b(6)f complex indicated the presence of a weakly coupled nitrogen nucleus. The nuclear quadrupole interaction (NQI) and the hyperfine interaction (HFI) parameters identified one Cu(2+) ligand as an imidazole nitrogen of a His residue, and electron-nuclear double resonance (ENDOR) confirmed the presence of a directly coordinated nitrogen. A model of the 3-dimensional structure of the cytochrome b(6)f complex was constructed on the basis of sequences and structural similarities with the mitochondrial cyt bc(1) complex, for which X-ray structures have been solved. This model indicated three possible His residues as ligands to inhibitory Cu(2+). Two of these are located on the "Rieske" iron-sulfur protein protein (ISP) while the third is found on the cyt f protein. None of these potential ligands appear to interact directly with the quinol oxidase (Q(o)) binding pocket. A model is thus proposed wherein Cu(2+) interferes with the interaction of the ISP protein with the Q(o) site, preventing the binding and subsequent oxidation of plastoquinonol. Implications for the involvement of ISP "domain movement" in Q(o) site catalysis are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call