Abstract

The co-pyrolytic behaviour of single-use plastics (Polystyrene, Low-density polyethylene) and Eucalyptus biomass was investigated at variable temperatures (300, 400, 500, and 600 °C) and the effects of their interactions on the characteristics of solid chars were also studied. The variation in thermal profiles of ‘Δ Mass loss%’ showed the inhibitory and synergistic effects of plastics on the biomass degradation, resulting in higher and lower yields of char composite, respectively. The blend containing polystyrene exhibited the highest synergistic (Δ M ≈ 15.1) and inhibitory (Δ M ≈ - 4) effects. The thermal kinetics of blends also indicated the presence of both the effects through relatively higher and lower apparent activation energies compared to the calculated, before and during the degradation of plastics. Despite low fixed carbon contents and high volatile matter, polymer-coated char composites had higher fuel value indices (36–136%), energy yields (1–26%) and calorific values (15–21%), relative to biochar. After the complete degradation of plastics, char composites exhibited higher values of electrical conductivity (2–40%), surface area (15–64%), and cation exchange capacity (5–19%). These properties advocate the flexibility of char composites' applicability as solid fuel or soil amender depending on the optimized conditions of co-pyrolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call