Abstract
trans-Fatty acids in humans not only may be obtained exogenously from food intake but also could be generated endogenously in tissues. The endogenous generation of trans-fatty acids, especially in the cell membranes induced by radical stress, is an inevitable source for the living species. Thiyl radicals generated from thiols act as the catalyst for the cis-trans isomerization of fatty acids. Arachidonic acid (5c,8c,11c,14c-20:4) with only two of the four double bonds deriving from linoleic acid in the diet can be used to differentiate the exogenous or endogenous formation of double bonds. The aim of this study is to evaluate the effective compounds in preventing thiyl radical-induced trans-arachidonic acid formation during UV irradiation in vitro. The trans-arachidonic acids were found to be 75% after 30 min UV irradiation of all-cis-arachidonic acid. Myricetin, luteolin, and quercetin had the highest thiyl radical scavenging activities, whereas sesamol, gallic acid, and vitamins A, C, and E had the lowest. The structures of flavonoids with higher thiyl radical scavenging activities were a 3',4'-o-dihydroxyl group in the B ring and a 2,3-double bond combined with a 4-keto group in the C ring. These effective compounds found in the present work may be used as lead compounds for the potential inhibitors in the formation of trans-fatty acids in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.