Abstract

BackgroundPeriodontal diseases are one of the major health problems and among the most important preventable global infectious diseases. Porphyromonas gingivalis is an anaerobic Gram-negative bacterium which has been strongly implicated in the etiology of periodontitis. Additionally, matrix metalloproteinases-9 (MMP-9) is an important factor contributing to periodontal tissue destruction by a variety of mechanisms. The purpose of this study was to evaluate the selected Sudanese medicinal plants against P. gingivalis bacteria and their inhibitory activities on MMP-9.MethodsSixty two methanolic and 50% ethanolic extracts from 24 plants species were tested for antibacterial activity against P. gingivalis using microplate dilution assay method to determine the minimum inhibitory concentration (MIC). The inhibitory activity of seven methanol extracts selected from the 62 extracts against MMP-9 was determined by Colorimetric Drug Discovery Kit. In search of bioactive lead compounds, Combretum hartmannianum bark which was found to be within the most active plant extracts was subjected to various chromatographic (medium pressure liquid chromatography, column chromatography on a Sephadex LH-20, preparative high performance liquid chromatography) and spectroscopic methods (liquid chromatography-mass spectrometry, Nuclear Magnetic Resonance (NMR)) to isolate and characterize flavogalonic acid dilactone and terchebulin as bioactive compounds.ResultsAbout 80% of the crude extracts provided a MIC value ≤4 mg/ml against bacteria. The extracts which revealed the highest potency were: methanolic extracts of Terminalia laxiflora (wood; MIC = 0.25 mg/ml) followed by Acacia totrtilis (bark), Ambrosia maritima (aerial part), Argemone mexicana (seed), C. hartmannianum (bark), Terminalia brownii (wood) and 50% ethanolic extract of T. brownii (bark) with MIC values of 0.5 mg/ml. T. laxiflora (wood) and C. hartmannianum (bark) which belong to combretaceae family showed an inhibitory activity over 50% at the concentration of 10 μg/ml against MMP-9. Additionally, MMP-9 was significantly inhibited by terchebulin with IC50 value of 6.7 μM.ConclusionsTo the best of our knowledge, flavogalonic acid dilactone and terchebulin were isolated from C. hartmannianium bark for the first time in this study. Because of terchebulin and some crude extracts acting on P. gingivalis bacteria and MMP-9 enzyme that would make them promising natural preference for preventing and treating periodontal diseases.

Highlights

  • Periodontal diseases are one of the major health problems and among the most important preventable global infectious diseases

  • To the best of our knowledge, flavogalonic acid dilactone and terchebulin were isolated from C. hartmannianium bark for the first time in this study

  • Because of terchebulin and some crude extracts acting on P. gingivalis bacteria and matrix metalloproteinases-9 (MMP-9) enzyme that would make them promising natural preference for preventing and treating periodontal diseases

Read more

Summary

Introduction

Periodontal diseases are one of the major health problems and among the most important preventable global infectious diseases. Two major factors contributed to the pathogenesis of periodontitis are namely periodontopathogens which cause direct damage to periodontal tissue through the secretion of toxic products, and the host response to periodontopathogens which results in the release of inflammatory mediators (proinflammatory cytokines, matrix metalloproteinases (MMPs) and prostanoids) [1]. Porphyromonas gingivalis, a Gram-negative, black pigmented and an anaerobic bacterium, has been strongly implicated in the etiology of some types of periodontitis including chronic adult periodontitis [2, 3]. Human pathogenic microorganisms have developed resistance to drugs owing to the extensive often use of commercial synthetic antibacterial drugs in large quantities without proper medical prescriptions and tests This condition has raised alarm in most countries and scientists are forced to search for an alternative to these compounds, often in the form of natural medicines from sources such as plants [11]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call