Abstract

The effects of thimerosal, a sulfhydryl oxidizing agent, on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in rat dorsal root ganglion neurons were studied using the whole-cell patch clamp technique. Thimerosal blocked the two types of sodium channels in a dose-dependent manner. The inhibitory effect of thimerosal was much more pronounced in TTX-R sodium channels than TTX-S sodium channels. The effect of thimerosal was irreversible upon wash-out with thimerosal-free external solution. However, dithiothreitol, a reducing agent, partially reversed it. Thimerosal shifted the steady-state inactivation curves for both types of sodium channels in the hyperpolarizing direction. The voltage dependence of activation of both types of sodium channels was shifted in the depolarizing direction by thimerosal. The inactivation rate in both types of sodium channels increased after thimerosal treatment. All these effects of thimerosal would add up to cause a depression of sodium channel function leading to a diminished neuronal excitability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.