Abstract

Src homology 2 (SH2) domains play a key role in many tyrosine kinase-mediated intracellular signal transduction pathways. Aberrancies in the interaction of these domains can lead to a range of disease states. As a result, the pharmaceutical industry has made a large temporal and financial investment in the development of specific inhibitors to these domains. Focusing on the interactions of the SH2 domain from the protein Src, we report how the correlation of structural and thermodynamic data allows an assessment of the process of drug design. The binding site of the protein includes two pockets; one interacts with phosphotyrosine groups on cognate ligands, and the other accommodates an aliphatic hydrophobic side chain. The interaction with cognate ligands is also mediated by a network of water molecules. Thermodynamic data from isothermal titration calorimetric studies suggest that modification of the interactions in the SH2 binding site has been largely unsuccessful in producing high-affinity inhibitors. Furthermore, it appears that compounds that disrupt the interfacial water pay the price for the loss of the contribution to the free energy from a network of hydrogen bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.