Abstract

5α-Cholest-8(14)-en-3β-ol-15-one (15 ketosterol) is a potent inhibitor of cholesterol biosynthesis with significant hypocholesterolemic activity. The results of a recent study (Schroepfer, G.J., Jr., Christophe, A., Chu, A.J., Izumi, A., Kisic, A. and Sherrill, B.C. (1988) Chem. Phys. Lipids 48, 29–58) have indicated that, after intragastric administration of the 15-ketosterol in triolein to rats, most of the compound in intestinal lymph occurs in the form of the oleate ester, which is associated with chylomicrons. Moreover, after intravenous administration of chylomicrons containing the oleate ester of 15-[2,4- 3H]ketosterol, rapid and selective uptake of 3H by liver was observed, which was associated with the rapid and substantial appearance of labeled free 15-ketosterol in liver. The present study concerns the capabilities of rat liver fractions to catalyze the hydrolysis of 15-ketosteryl oleate. Efficient hydrolysis was observed at acid pH with a digitonin-solubilized extract of rat liver, with a rate similar to that for the hydrolysis of cholesteryl oleate. The distribution of acid 15-ketosteryl oleate hydrolase of whole liver homogenate on a metrizamide isopycnic density gradient was similar to that of acid cholesteryl oleate hydrolase and acid phosphatase, suggesting that the lysosomal acid lipase is the enzyme responsible for the hydrolysis of the 15-ketosteryl oleate at acid pH. At neutral pH, 15-ketosteryl oleate and cholesteryl oleate were hydrolyzed at similar rates by the microsomal fraction of liver homogenate, whereas the 15-ketosteryl oleate was hydrolyzed at a much lower rate than cholesteryl oleate by the cytosolic fraction. The distribution of neutral 15-ketosteryl oleate hydrolase activity of whole liver homogenate on a metrizamide isopycnic density gradient was most correlated to a microsomal esterase, whereas cholesteryl oleate hydrolase activity was most correlated to a cytosolic enzyme. Both 15-ketosteryl oleate and cholesteryl oleate hydrolase activities were correlated to a mitochondrial marker enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call