Abstract
Although the neurotoxic potential of methamphetamine (METH) is well established, underlying mechanisms have yet to be identified. In the present study, we sought to determine whether ionic dysregulation was a feature of METH neurotoxicity. In particular, we reasoned that if METH impairs the function of Na(+)/H(+) and/or Na(+)/Ca(2+) antiporters by compromising the inward Na(+) gradient [via prolonged DA transporter (DAT) activation and Na(+)/K(+) ATPase inhibition], then amiloride (AMIL) and other inhibitors of Na(+)/H(+) and/or Na(+)/Ca(2+) exchange would potentiate METH neurotoxicity. To test this hypothesis, mice were treated with METH alone or in combination with AMIL or one of its analogs; 1 week later, the animals were killed for studies of dopamine (DA) neuronal integrity. AMIL markedly potentiated the toxic effect of METH on DA neurons. Potentiation was not caused by increased core temperature, enhanced DAT activity or higher METH brain levels. The DAT inhibitor, WIN-35,428, protected completely against METH-induced DA neurotoxicity in AMIL pretreated animals, suggesting that the potentiating effects of AMIL require a METH/DAT interaction. Findings with METH and AMIL were extended to six other AMIL analogs (MIA, EIPA, DIMA, BENZ, BEP, DiCBNZ), another species (rats), and neuronal type (5-HT neurons). These results support the notion that ionic dysregulation may play a role in METH neurotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.