Abstract

Sporogenous mutants of Dictyostelium discoideum strain V12M2 were used to determine whether the intracellular levels of cyclic AMP or other second messengers regulate differentiation. Increasing external concentrations of cyclic AMP promoted spore formation. Caffeine and progesterone, which lower intracellular cyclic AMP levels by different mechanisms, blocked spore formation and favored stalk cell formation. In contrast, differentiation of both spore and stalk cells occurred normally in the presence of agents that disrupt calcium/calmodulin or protein kinase C-based second messenger systems. The data are in accord with the view that (1) intracellular cyclic AMP is essential for terminal differentiation of both cell types, and (2) higher levels are required for formation of spores than for stalk cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.