Abstract

We have shown that the interaction of pepstatin A with human immunodeficiency virus-1 protease (HIV-1 protease) can be characterized by a high-affinity mode (Ki = 478 +/- 27 nM), resulting in pure competitive inhibition of the hydrolytic activity of HIV-1 protease toward the fluorogenic substrate. Binding of pepstatin in this mode induces a blue shift in the endogenous fluorescence arising from the tryptophan residues in HIV-1 protease. This shift is maximal in the presence of 10 microM pepstatin. Haloperidol, in contrast, interacts with HIV-1 protease with weaker affinity (Ki = 19 +/- 1 microM) in a mode which results in pure noncompetitive inhibition of the hydrolytic activity of HIV-1 protease. Binding of haloperidol in this mode induces a red shift in the endogenous fluorescence arising from the tryptophan residues in HIV-1 protease. This shift is maximal in the presence of 200 microM haloperidol. Addition of both pepstatin and haloperidol at concentrations in the range of their Ki values results in additive inhibition of the hydrolytic activity of HIV-1 protease, as well as an additive effect on the tryptophan fluorescence of protease. However, at saturating concentrations of pepstatin and haloperidol, the effect of haloperidol was predominant, as measured by the changes in the intrinsic fluorescence of HIV-1 protease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call