Abstract

Disruption of glycosylphosphatidylinositol biosynthesis is genetically and chemically validated as a drug target against the protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. The N-acetylglucosamine-phosphatidylinositol de-N-acetylase (deNAc) is a zinc metalloenzyme responsible for the second step of glycosylphosphatidylinositol biosynthesis. We recently reported the synthesis of eight deoxy-2-C-branched monosaccharides containing carboxylic acid, hydroxamic acid, or N-hydroxyurea substituents at the C2 position that may act as zinc-binding groups. Here, we describe the synthesis of a glucocyclitol-phospholipid incorporating a hydroxamic acid moiety and report the biochemical evaluation of the monosaccharides and the glucocyclitol-phospholipid as inhibitors of the trypanosome deNAc in the cell-free system and against recombinant enzyme. Monosaccharides with carboxylic acid or hydroxamic acid substituents were found to be the inhibitors of the trypanosome deNAc with IC50 values 0.1–1.5 mm, and the glucocyclitol-phospholipid was found to be a dual inhibitor of the deNAc and the α1-4-mannose transferase with an apparent IC50 = 19 ± 0.5 μm.

Highlights

  • Biosynthesis of GPI, which occurs in the endoplasmic reticulum, is initiated by the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to phosphatidylinositol (PI) to generate N-acetylglucosamine-phosphatidylinositol (GlcNAc-PI 1, Figure 1), which is de-N-acetylated by the enzyme GlcNAc-PI de-N-acetylase (EC3.5.1.89) to give glucosamine phosphatidylinositol (GlcN-PI) 2 [12]

  • We have postulated that zinc-binding group (ZBG) could act as inhibitors of the T. brucei GlcNAc-PI de-N-acetylase [22]

  • We have previously shown that the GPI biosynthetic enzyme GlcNAc-PI de-N-acetylase is a zinc metalloenzyme and postulated that ZBGs could act as inhibitors [22]

Read more

Summary

Introduction

Biosynthesis of GPI, which occurs in the endoplasmic reticulum, is initiated by the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to phosphatidylinositol (PI) to generate N-acetylglucosamine-phosphatidylinositol (GlcNAc-PI 1, Figure 1), which is de-N-acetylated by the enzyme GlcNAc-PI de-N-acetylase (EC3.5.1.89) to give GlcN-PI 2 [12]. This de-N-acetylation is a prerequisite for the subsequent mannosylation of GlcN-PI that leads to mature GPI anchor precursors [13].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call