Abstract
Deep learning-based generative modeling demonstrates proven advantages as an effective approach in molecular discovery. This study introduces a generative-network based method called Inhibitor_Mol_VAE, which uses a variational autoencoder model to generate corrosion inhibitor molecules with targeted inhibition efficiency. We first evaluate the model’s ability to reconstruct molecules. Then, we assess the model’s ability to generate new inhibitor molecules using physiochemical properties (including MolWt, LogP, Vdw_volume, and Electronegativity). New molecules with high inhibition efficiencies at low concentrations, such as [ethoxy(methoxy)phosphoryl]-phenylmethanol and (alpha-methylamino-benzyl)-phosphonsaeure-monoaethylester are successfully discovered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.