Abstract

In the absence of PSII, non-photochemical reduction of plastoquinones (PQs) occurs following NADH or NADPH addition in thylakoid membranes of the green alga Chlamydomonas reinhardtii. The nature of the enzyme involved in this reaction has been investigated in vitro by measuring chlorophyll fluorescence increase in anoxia and light-dependent O 2 uptake in the presence of methyl viologen. Based on the insensitivity of these reactions to rotenone, a type-I NADH dehydrogenase (NDH-1) inhibitor, and their sensitivity to flavoenzyme inhibitors and thiol blocking agents, we conclude to the involvement of a type-II NADH dehydrogenase (NDH-2) in PQ reduction. Intact Chlamydomonas cells placed in anoxia have the property to produce H 2 in the light by a Fe-hydrogenase which uses reduced ferredoxin as an electron donor. H 2 production also occurs in the absence of PSII thanks to the existence of a non-photochemical pathway of PQ reduction. From inhibitors effects, we suggest the involvement of a plastidial NDH-2 in PSII-independent H 2 production in Chlamydomonas. These results are discussed in relation to the absence of ndh genes in Chlamydomonas plastid genome and to the existence of 7 ORFs homologous to type-II NDHs in its nuclear genome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.