Abstract
Beta-lactamase inhibitors (clavulanic acid, tazobactam, and sulbactam) greatly enhance the therapeutic efficacy of their partner antibiotics (amoxacillin, ampicillin, piperacillin, and ticarcillin) against common enteric and non-enteric organisms possessing class A beta-lactamases. Unfortunately, the number of class A enzymes being discovered that are resistant to these combinations is increasingly rapidly. The TEM and SHV class A beta-lactamases resistant to inhibitors have point mutations in critical amino acids important for catalysis. Compared to the wild type beta-lactamase, inhibitor resistant enzymes are inefficient at hydrolyzing benzylpenicillin, aminopenicillins, and cephalosporins. Nevertheless, hyper-production of these enzymes resulting from mutations in the promoter region can confer substantial levels of resistance. Understanding the microbiologic and kinetic properties of these inhibitor resistant class A beta-lactamases can lead to the design of more potent beta-lactam compounds as well as more effective inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Frontiers in bioscience : a journal and virtual library
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.