Abstract

Neurogenesis in the adult hippocampal dentate gyrus is promoted by transient forebrain ischemia. The mechanism responsible for this ischemia-induced neurogenesis, however, remains to be determined. It has been suggested that there may be a close relationship between neurogenesis and the expression of vascular endothelial growth factor, an angiogenic factor. The purpose of the present study was to examine the relationship between vascular endothelial growth factor and cell proliferation in the dentate gyrus after transient forebrain ischemia. The mRNA expression of vascular endothelial growth factor was increased in the dentate gyrus on day 1 after ischemia. Immunohistochemical analysis on day 9 after ischemia, when a significant increase in cell proliferation was seen, showed that the cerebral vessel space in the subgranular zone of the dentate gyrus had not been affected by the ischemia. Neither were the vascular densities on days 1 and 3 after ischemia altered compared with those of non-operated naïve control rats. Furthermore, the distance from the center of the proliferative cells to the nearest cerebral vessel of ischemic rats was comparable to that of the sham-operated rats. We demonstrated that transient forebrain ischemia-induced cell proliferation and differentiation to mature neurons in the hippocampal dentate gyrus was attenuated by the i.c.v. administration of a vascular endothelial growth factor receptor tyrosine kinase inhibitor. These results suggest that vascular endothelial growth factor receptor at the early period of reperfusion may contribute to neurogenesis rather than to angiogenesis in the hippocampal dentate gyrus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call