Abstract
Author SummaryA series of recent studies have found that the levels of the enzyme striatal-enriched protein tyrosine phosphatase (STEP) are raised in several different neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, fragile X syndrome, and schizophrenia. STEP normally opposes the development of synaptic strengthening, and these abnormally high levels of active STEP disrupt synaptic function by removing phosphate groups from a number of proteins, including several glutamate receptors and kinases. Dephosphorylation results in internalization of the glutamate receptors and inactivation of the kinases—events that disrupt the consolidation of memories. Here we identify the benzopentathiepin 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (known as TC-2153) as a novel inhibitor of STEP. We show that the mechanism of action involves the formation of a reversible covalent bond between the inhibitor and the catalytic cysteine residue of STEP, and we demonstrate the activity of TC-2153 both in vitro and in vivo. TC-2153 shows specificity towards STEP compared to several other tyrosine phosphatases and shows no toxicity to cultured neurons. Importantly, the compound reversed cognitive deficits in a mouse model of Alzheimer's disease in a way that did not involve changes in the usual pathological signs (p-tau and beta-amyloid).
Highlights
STriatal-Enriched protein tyrosine Phosphatase (STEP) (PTPN5) is a brain-enriched protein tyrosine phosphatase (PTP) targeted in part to postsynaptic terminals of excitatory glutamatergic synapses [1,2,3,4]
A series of recent studies have found that the levels of the enzyme striatal-enriched protein tyrosine phosphatase (STEP) are raised in several different neuropsychiatric and neurodegenerative disorders, including Alzheimer’s disease, fragile X syndrome, and schizophrenia
STEP normally opposes the development of synaptic strengthening, and these abnormally high levels of active STEP disrupt synaptic function by removing phosphate groups from a number of proteins, including several glutamate receptors and kinases
Summary
STriatal-Enriched protein tyrosine Phosphatase (STEP) (PTPN5) is a brain-enriched protein tyrosine phosphatase (PTP) targeted in part to postsynaptic terminals of excitatory glutamatergic synapses [1,2,3,4].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.