Abstract

IntroductionPlasmacytoid dendritic cells (pDCs) play not only a central role in the antiviral immune response in innate host defense, but also a pathogenic role in the development of the autoimmune process by their ability to produce robust amounts of type I interferons (IFNs), through sensing nucleic acids by toll-like receptor (TLR) 7 and 9. Thus, control of dysregulated pDC activation and type I IFN production provide an alternative treatment strategy for autoimmune diseases in which type I IFNs are elevated, such as systemic lupus erythematosus (SLE). Here we focused on IκB kinase inhibitor BAY 11-7082 (BAY11) and investigated its immunomodulatory effects in targeting the IFN response on pDCs.MethodsWe isolated human blood pDCs by flow cytometry and examined the function of BAY11 on pDCs in response to TLR ligands, with regards to pDC activation, such as IFN-α production and nuclear translocation of interferon regulatory factor 7 (IRF7) in vitro. Additionally, we cultured healthy peripheral blood mononuclear cells (PBMCs) with serum from SLE patients in the presence or absence of BAY11, and then examined the inhibitory function of BAY11 on SLE serum-induced IFN-α production. We also examined its inhibitory effect in vivo using mice pretreated with BAY11 intraperitonealy, followed by intravenous injection of TLR7 ligand poly U.ResultsHere we identified that BAY11 has the ability to inhibit nuclear translocation of IRF7 and IFN-α production in human pDCs. BAY11, although showing the ability to also interfere with tumor necrosis factor (TNF)-α production, more strongly inhibited IFN-α production than TNF-α production by pDCs, in response to TLR ligands. We also found that BAY11 inhibited both in vitro IFN-α production by human PBMCs induced by the SLE serum and the in vivo serum IFN-α level induced by injecting mice with poly U.ConclusionsThese findings suggest that BAY11 has the therapeutic potential to attenuate the IFN environment by regulating pDC function and provide a novel foundation for the development of an effective immunotherapeutic strategy against autoimmune disorders such as SLE.

Highlights

  • Plasmacytoid dendritic cells play a central role in the antiviral immune response in innate host defense, and a pathogenic role in the development of the autoimmune process by their ability to produce robust amounts of type I interferons (IFNs), through sensing nucleic acids by toll-like receptor (TLR) 7 and 9

  • These findings suggest that BAY 11-7082 (BAY11) has the therapeutic potential to attenuate the IFN environment by regulating plasmacytoid dendritic cell (pDC) function and provide a novel foundation for the development of an effective immunotherapeutic strategy against autoimmune disorders such as systemic lupus erythematosus (SLE)

  • Because BAY11 was shown to have a cytotoxic activity at high concentrations [30], we analyzed the survival of peripheral blood mononuclear cells (PBMC) in the presence of different doses of BAY11 by propidium iodide (PI) staining (Figure 1A)

Read more

Summary

Introduction

Plasmacytoid dendritic cells (pDCs) play a central role in the antiviral immune response in innate host defense, and a pathogenic role in the development of the autoimmune process by their ability to produce robust amounts of type I interferons (IFNs), through sensing nucleic acids by toll-like receptor (TLR) 7 and 9. Only a small fraction of cells, plasmacytoid dendritic cells (pDCs) represent a major source of type I interferons (IFNs) in peripheral blood mononuclear cells (PBMCs) and lymphoid tissues in both humans and mice [1,2], they play a central role in the innate antiviral immune response by their ability to rapidly produce robust amounts of type I IFNs upon viral infection This function is through their selective expression of toll-like receptor (TLR) and TLR9, which respectively sense viral RNA and DNA within the early endosomes [3]. These unique molecular mechanisms endow pDCs with the specialized innate ability of IFN response upon viral infection

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call