Abstract

High strength steel in marine environments suffers from severe corrosion susceptibility and the presence of bacteria can exacerbate the effect, accelerating degradation via microbiologically influenced corrosion (MIC). Here we propose a novel approach to MIC inhibition by designing a system capable of limiting the effects of both bacterial growth and corrosion. The combination of a newly synthesised compound, cetrimonium 4-hydroxycinnamate (Cet-4OHCin), with lanthanum 4-hydroxycinnamate was the only system tested to date that could both inhibit abiotic corrosion in artificial seawater and minimise bacteria consortium densities over an exposure period of 24 h. This success was proposed to be due to them having the same anion, making them stable when mixed in the solution of the test environment. Furthermore, we confirmed from cytotoxicity testing that Cet-4OHCin demonstrated similarly limited toxicity towards human cells as the commercially available cetrimonium bromide, a known safe additive to cosmetic products. This new system shows promise as a safe and effective multifunctional inhibitor mixture to reduce the effects of MIC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.