Abstract

The oxidation of pyrite is the main cause of acidic mine drainage (AMD), which is a very serious environmental problem in numerous mining areas around the world. Previous studies have shown that passivation agents create a hydrophobic film on the surface of pyrite, effectively isolating oxygen and water. However, the presence of abundant sulfide minerals in tailings ponds may exacerbate AMD when exposed to solar radiation, due to the semiconductor properties of pyrite. It remains uncertain whether the current surface passivation coating can effectively prevent the oxidation of pyrite under light conditions. This paper is the first to investigate the passivation effect as well as the mechanism of surface passivation coating on pyrite under illumination from the perspective of materials science. The results demonstrated that the triethylenetetramine-bisdithiocarbamate (DTC-TETA) passivation coating on pyrite almost completely suppressed the photooxidation of pyrite under illumination by changing the migration path of photogenerated charge carriers. The formation of NC(S)2-Fe chelating groups provides atomic-level interface channels for DTC-TETA to transfer electrons to pyrite and creates a favorable reduction environment for pyrite. Besides, DTC-TETA coating greatly improves the electron-hole pairs recombination efficiency of pyrite, which significantly inhibits the photogenerated electron reduction of oxygen to generate reactive oxygen species (ROS). Moreover, DTC-TETA coating captures the photogenerated holes, avoiding direct oxidation of pyrite by holes. Density functional theory (DFT) calculations revealed that the DTC-TETA coating increases the adsorption energy barrier for oxygen and water. The results extend the existing knowledge on passivation mechanisms on pyrite and hold significant implications for the future screening, evaluation, and practical application of surface passivating agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call