Abstract

Acid-sensing ion channel (ASIC) serves important roles in the transmission of nociceptive information. To confirm the analgesic mechanism of dragon's blood resin, patch-clamp technique, in vivo animal experiments, and immunohistochemical staining were used to observe the effects of the three flavonoids (loureirin B, cochinchinemin A, and cochinchinemin B) isolated from dragon's blood resin on ASIC. Results showed that the three flavonoids exerted various inhibitory effects on ASIC currents in rat dorsal root ganglion (DRG) neurons. The combination of the three flavonoids with total concentration of 6.5μM could decrease (53.8±4.3%) of the peak amplitude and (45.8±4.5%) of the sustained portion of ASIC currents. The combination of the three flavonoids was fully efficacious on complete Freud's adjuvant (CFA)-induced inflammatory thermal hyperalgesia at a dose of 6.5mM similar with amiloride at 10mM. The analgesic effects of the combination could be weakened by an ASIC activator 2-guanidine-4-methylquinazoline. CFA-induced hyperalgesia was accompanied by c-Fos up-regulation in DRG neurons, and the combination rescued thermal hyperalgesia through down-regulation of c-Fos and ASIC3 expression in CFA-induced inflammation. These collective results suggested that the flavonoids isolated from dragon's blood resin could be considered as the chemical compounds that exert analgesic effects on inflammatory thermal pain due to action on ASIC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.