Abstract

Inhibition of p-xylene isomerization in the presence of H-Y (Si/Al 2.6) and H-BEA (Si/Al 12.5) zeolites was studied under conditions relevant to p-xylene production from 2,5-dimethylfuran (DMF) and ethylene. Through examination of the reaction components, it was shown that both DMF and 2,5-hexanedione inhibit transalkylation and methyl shift reactions of p-xylene, while other reaction components, water and ethylene, do not. Retention of Bronsted acid sites after the reaction was shown through the use of 27Al NMR for both H-Y and H-BEA zeolites, but with a reduction in the ratio of tetrahedrally coordinated aluminum (strong acid sites) to octahedrally coordinated aluminum (Lewis acid sites) coinciding with the disappearance of the framework aluminum. Diffuse reflectance spectroscopy has shown preferential adsorption of DMF and 2,5-hexanedione (DMF + H2O) relative to p-xylene to the Bronsted acid sites located in the super and sodalite cages of the H-Y. Desorption characteristics for DMF and p-xylene in H-Y...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.