Abstract

In commercial production settings, few options exist to prevent or treat angular leaf spot (ALS) of strawberry, a disease of economic importance and caused by the bacterial pathogen Xanthomonas fragariae. In the process of isolating and identifying X. fragariae bacteria from symptomatic plants, we observed growth inhibition of X. fragariae by bacterial isolates from the same leaf macerates. Identified as species of Pseudomonas and Rhizobium, these isolates were confirmed to suppress growth of X. fragariae in agar overlay plates and in microtiter plate cultures, as did our reference strain Pseudomonas putida KT2440. Screening of a transposon mutant library of KT2440 revealed that disruption of the biosynthetic pathway for the siderophore pyoverdine resulted in complete loss of X. fragariae antagonism, suggesting iron competition as a mode of action. Antagonism could be replicated on plate and in culture by addition of purified pyoverdine or by addition of the chelating agents tannic acid and dipyridyl, while supplementing the medium with iron negated the inhibitory effects of pyoverdine, tannic acid and dipyridyl. When co-inoculated with tannic acid onto strawberry plants, X. fragariae’s ability to cause foliar symptoms was greatly reduced, suggesting a possible opportunity for iron-based management of ALS. We discuss our findings in the context of ‘nutritional immunity,’ the idea that plant hosts restrict pathogen access to iron, either directly, or indirectly through their associated microbiota.

Highlights

  • Xanthomonas fragariae is the causal agent of angular leaf spot (ALS) of strawberry and an international quarantine pathogen of considerable concern to strawberry nurseries and growers (Roberts et al, 1997)

  • In an effort to isolate X. fragariae strains from ALS-symptomatic strawberry plants as source material to study ALS, we followed standard procedure (Koike, 1965) by plating leaf macerates onto WBN agar plates and selecting colonies with a brightyellow colony color that is characteristic for X. fragariae growing on these plates (Figure 1, inset). 16s rRNA gene sequencing confirmed that most isolates were X. fragariae

  • Our results suggest that bioavailability of iron is a previously unrecognized Achilles heel of strawberry pathogen X. fragariae

Read more

Summary

Introduction

Xanthomonas fragariae is the causal agent of angular leaf spot (ALS) of strawberry and an international quarantine pathogen of considerable concern to strawberry nurseries and growers (Roberts et al, 1997). Control of ALS by strawberry growers is generally achieved preventatively, by planting crowns that are procured from nurseries as certified disease-free planting stock (Braun and Hildebrand, 2013). Management of X. fragariae in the field usually involves the foliar application of copper compounds, but due to resistance developed by the bacterium, these compounds must be applied at near-phytotoxic levels to be effective (Roberts et al, 1997; Braun and Hildebrand, 2013).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call