Abstract

Xanthine oxidase (XO) is an important source of reactive oxygen species. This study investigated whether XO inhibition exerts renoprotective effects by inhibiting vascular endothelial growth factor (VEGF) and NADPH oxidase (NOX) in diabetic kidney disease (DKD). Febuxostat (5 mg/kg) was administered to streptozotocin (STZ)-treated 8-week-old male C57BL/6 mice via intraperitoneal injection for 8 weeks. The cytoprotective effects, its mechanism of XO inhibition, and usage of high-glucose (HG)-treated cultured human glomerular endothelial cells (GECs) were also investigated. Serum cystatin C, urine albumin/creatinine ratio, and mesangial area expansion were significantly improved in febuxostat-treated DKD mice. Febuxostat reduced serum uric acid, kidney XO levels, and xanthine dehydrogenase levels. Febuxostat suppressed the expression of VEGF mRNA, VEGF receptor (VEGFR)1 and VEGFR3, NOX1, NOX2, and NOX4, and mRNA levels of their catalytic subunits. Febuxostat caused downregulation of Akt phosphorylation, followed by the enhancement of dephosphorylation of transcription factor forkhead box O3a (FoxO3a) and the activation of endothelial nitric oxide synthase (eNOS). In an in vitro study, the antioxidant effects of febuxostat were abolished by a blockade of VEGFR1 or VEGFR3 via NOX-FoxO3a-eNOS signaling in HG-treated cultured human GECs. XO inhibition attenuated DKD by ameliorating oxidative stress through the inhibition of the VEGF/VEGFR axis. This was associated with NOX-FoxO3a-eNOS signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.