Abstract
1. The spontaneous EMG activity of the forelimb extensor triceps brachii of both sides as well as their responses to roll tilt of the animal at 0.15 Hz, +/- 10 degrees leading to sinusoidal stimulation of labyrinth receptors were tested in precollicular decerebrate cats, before and after unilateral electrolytic lesion of the locus coeruleus (LC). 2. Lesion of the LC of one side decreased the tonic contraction of the ipsilateral limb extensors, but greatly increased the amplitude of modulation and the response gain of the corresponding triceps brachii to animal tilt; however, no change in the phase angle of the responses was observed. A slight increase in the response gain affected also the contralateral triceps brachii. 3. The postural asymmetry described above was followed from time to time by short-lasting episodes of postural atonia, which affected not only the ipsilateral but also the contralateral limb extensors. These episodes were also associated with a suppression of the EMG responses of the triceps brachii of both sides to sinusoidal stimulation of labyrinth receptors. 4. The episodes of postural atonia which appeared after unilateral lesion of the LC were not associated with rapid eye movements; however, the slow horizontal eye movements, which may occur in normal decerebrate animals, increased in amplitude throughout these episodes. Both the postural atonia as well as the related suppression of the vestibulospinal reflexes, which lasted for 5-10 min, disappeared either spontaneously or following acoustic or somatosensory stimulations. 5. Histological controls indicated that unilateral lesions limited to the caudal part of the LC produced only a permanent decrease in postural activity of the ipsilateral limbs, associated with an increase in gain of the vestibulospinal reflex. However, in order to elicit episodes of bilateral postural atonia associated with the suppression of the vestibulospinal reflexes it was necessary to extend the lesion to more rostral aspects of the LC. 6. Since the effects described above were similar to those elicited in decerebrate cats by local injection of cholinergic agonists into the dorsal part of the pontine reticular formation, we postulated that the postural atonia as well as the related suppression of the vestibulospinal reflexes was due to transient release from LC inhibition of these dorsal pontine reticular structures, which might in turn excite the medullary reticulospinal neurons, thus leading to inhibition of the extensor motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.